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ABSTRACT
Despite their significant economic contributions, Small andMedium

Enterprises (SMEs) face persistent barriers to securing traditional

financing due to information asymmetries. Cash flow lending has

emerged as a promising alternative, but its effectiveness depends on

accurate modelling of transaction-level data. The main challenge

in SME transaction analysis lies in the unstructured nature of tex-

tual descriptions, characterised by extreme abbreviations, limited

context, and imbalanced label distributions. While consumer trans-

action descriptions often show significant commonalities across

individuals, SME transaction descriptions are typically nonstandard

and inconsistent across businesses and industries. To address some

of these challenges, we propose a bank categorisation pipeline that

leverages synthetic data generation to augment existing transaction

data sets. Our approach comprises three core components: (1) a syn-

thetic data generation module that replicates transaction properties

while preserving context and semantic meaning; (2) a fine-tuned

classification model trained on this enriched dataset; and (3) a cal-

ibration methodology that aligns model outputs with real-world

label distributions. Experimental results demonstrate that our ap-

proach achieves 73.49% (±5.09) standard accuracy on held-out data,

with high-confidence predictions reaching 90.36% (±6.52) accuracy.

The model exhibits robust generalisation across different types of

SMEs and transactions, which makes it suitable for practical deploy-

ment in cash-flow lending applications. By addressing core data

challenges, namely, scarcity, noise, and imbalance, our framework

provides a practical solution to build robust classification systems

in data-sparse SME lending contexts.

∗
Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2025 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

KEYWORDS
SME transaction classification, synthetic data generation, financial

text classification, calibrated classification, Open Banking, cash flow

lending

ACM Reference Format:
Pietro Alessandro Aluffi, Brandi Jess, Marya Bazzi, Kate Kennedy, Matt

Arderne, Daniel Rodrigues, and Martin Lotz. 2025. Categorising SME Bank

Transactions with Machine Learning and Synthetic Data Generation. In

Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The digital transformation of financial services has created new op-

portunities for data-driven access to finance and credit assessment,

particularly for sectors that do not have easy access to traditional

financial instruments, such as Small and Medium-sized Enterprises

(SMEs). Despite their substantial contributions to innovation, em-

ployment, and GDP, SMEs continue to face major barriers in secur-

ing traditional bank financing [4, 9]. Banks often perceive SMEs as

high-risk entities due to incomplete, inaccurate, out-of-date, or non-

standardised financial data. Due to their limited financial buffers

and narrower market focus, SMEs often fail quickly and traditional

credit assessments. become insufficient for capturing and reacting

to financial distress in a timely fashion.

Leveraging future cash flows, cash flow lending has emerged as

a promising alternative to assess creditworthiness for assets-light

businesses [23]. The effectiveness of cash flow lending depends

on accurate modelling and interpretation of transaction-level cash

flow data, both at the underwriting stage and throughout the loan

lifecycle. Despite the advent of the Open Banking framework that

improves data availability, granularity, and transparency, challenges

related to data processing and interpretation remain: while con-

sumer financial activities tend to be more homogeneous from one

individual to another and use established methods for classification,

SME transactions are often sparse, unclear, and highly dependent

on their specific context [14]. SME transaction data can vary both

in structure and semantics between different businesses and sectors,

which complicates the extraction of consistent insights from raw

data.
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The core challenge in automatically classifying SME bank trans-

actions lies in the scarcity and unstructured nature of their textual

descriptions, characterised by extreme short-hand abbreviations,

limited contextual information, and highly imbalanced label distri-

butions [17, 26]. These challenges make conventional classification

methods difficult to generalise. Although manual annotations or

rule-based heuristics provide some interpretability and domain

alignment [17], these approaches struggle to scale and adapt to

the evolving and heterogeneous nature of SME financial data. In

practice, resource constraints on manual labelling and inference

further limit the feasibility of large and complex classification sys-

tems. Therefore, new approaches must be able to generalise from

small samples and better recognise different transaction types for a

given SME.

We propose a bank transaction categorisation pipeline
1
that

leverages synthetic data generation to augment existing SME trans-

action datasets. Synthetic data provides a scalable and privacy-

preserving approach to simulate realistic transaction patterns, even

in the presence of limited or highly varied data where meaningful

behaviours are often under-represented. Our pipeline comprises

three core components: (1) a synthetic data generation module that

replicates SME transaction properties while preserving contextual

realism; (2) a fine-tuned and calibrated categorisation model trained

on this enriched dataset; and (3) an evaluation on manually labelled

transactions.

2 RELATEDWORK
Following the financial crisis, UK banks reduced SME lending, creat-

ing a £95 billion finance gap (2015-2022) filled by challenger banks

and alternative finance providers [15]. Cash flow lending requires

robust risk modelling from transaction histories. Misclassification

can cause adverse selection or default, making accurate categoriza-

tion critical. SME transaction analyses hereby face major challenges.

Bank descriptions are short, noisy, and inconsistent [27]. Weak su-

pervision combining rule-based labelling with neural networks,

and CNN/RNN models for pattern detection attempts to address

these unstructured descriptions [3]. Inconsistent naming, includ-

ing abbreviations, also reduces NLP effectiveness [6, 24]. Metadata

integration [8, 27], specialised tokenization [26], and hybrid archi-

tectures are common approaches to address these challenges [13].

In addition, manual annotation is costly for domain-specific SME

categorization [28], which can be partially resolved with fine-tuned

BERT and zero-shot classification for unlabelled data [21]. These

limited state-of-the-art approaches for categorising SME bank trans-

actions, including LSTMs with anomaly detection [16], end-to-end

learning systems[22, 25], and LLM-enabled synthetic transaction

generation and zero-shot classification [12, 19] facilitate some dy-

namic training for SME variability; circular dependency persists:

classification needs context, context models need labels [17]. The

following main limitations remain: one, the reliance on extensive

manual annotations [28]. Two, limited generalisability to unseen

transactions (e.g., a given SME is highly volatile with multiple

temporal drifts in transaction patterns throughout its lifetime) or

SMEs [27].

1
Pipeline implementation code available upon request.

Our key contribution is two-fold: First, we develop a generalis-

able, robust pipeline from a sparse set of initial manual annotations.

Second, our pipeline leverages LLMs for synthetic data genera-

tion in order to a) mitigate data scarcity and, more importantly, b)

cater to SME context dependency by amplifying business-specific

idiosyncrasies as part of the categorisation pipeline. Our contribu-

tion thus improves performance on under-represented or emerging

transaction types.

The setup of our pipeline is as follows: (1) generating class-

balanced data via LLM prompting, (2) fine-tuning transformers

with focal loss, and (3) calibrating outputs against real-world distri-

butions.

3 METHODOLOGY
3.1 Problem Formulation
We define our classification task based on financial transactions.

Each data point comprises a transaction described by free-text fields

and associated metadata. The structure of our dataset is formally

defined as follows.

Definition 3.1 (Dataset). The dataset is defined as𝑇 (𝐷, 𝐿), where:
• 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑛} is the set of cleaned transaction descrip-

tions.

• 𝐿 = {𝑙1, 𝑙2, . . . , 𝑙𝑛} is the set of corresponding manually as-

signed labels from a finite set of predefined transaction cate-

gories indicating the transaction type.

Before the classification task, we apply specific preprocessing

steps to standardise descriptions and aggregate similar entries.

These steps are encapsulated in the following functions:

Definition 3.2 (Preprocessing Functions). The preprocessing in-

volves:

• Clean(·): Standardises and cleans raw transaction descrip-

tions 𝑑𝑟𝑎𝑤 to produce 𝑑 ∈ 𝐷 .
• Group(·): Aggregates semantically similar transaction en-

tries within 𝐷 .

Given the potential scarcity of labelled data, we augment the

training set using synthetic examples. This process is defined as:

Definition 3.3 (Data Augmentation). To address limited labelled

data, we apply Generate(·), a function that synthesises new la-

belled examples (𝑑′, 𝑙 ′) based on the existing 𝑇 (𝐷, 𝐿) to augment

the training set.

Finally, classification performed by a machine learning model,

specifically a fine-tuned language model chosen for its suitability

to financial text:

Definition 3.4 (Classification Model and Calibration). The classifi-
cation process involves two main stages:

• Fine-tuning: The core classification function Finetune(·)
is obtained by fine-tuning FinBERT [2], a domain-specific

language model pre-trained on financial texts. This function

Finetune maps a preprocessed transaction description 𝑑𝑖 to

raw output logits over the set of possible categories 𝐿𝑐𝑎𝑡 .

• Calibration: To ensure the model’s output probabilities are

well-calibrated and align with observed data distributions,
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a subsequent calibration function, denoted Calibrate(·), is
applied to the logits produced by Finetune(·). This function
implements temperature scaling [10].

The application of Calibrate(·) to the output of Finetune(·) yields
the final calibrated classifier, which produces the probability distri-

bution 𝑃 (𝐿 |𝑑𝑖 ).

Data collection, pre-processing to obtain 𝐷 , and labelling pro-

cesses for 𝐿 are described in Sections 3.1.1 and 3.1.2. Implementation

details for the data augmentation methodology can be found in Sec-

tion 3.1.3. Implementation details for classification and calibration

are in Section 3.1.4 and 3.1.5.

Algorithm 1 Transaction Classification Pipeline. This process

utilises functions for cleaning (Clean) and grouping (Group), de-

fined in Def. 3.2, data augmentation (Generate), defined in Def. 3.3,

and the classification model function (Finetune) followed by cali-

bration (Calibrate), both described in Def. 3.4.

Require: Dataset 𝑇 (𝐷, 𝐿) with transactions 𝐷 = {𝑑1, . . . , 𝑑𝑛} and
labels 𝐿 = {𝑙1, . . . , 𝑙𝑛}

Ensure: Trained and calibrated classifier function 𝑓 ′ (·) represent-
ing the final model output.

1: 𝐷′ ← Clean(𝐷)
2: 𝐷′′ ← Group(𝐷′)
3: 𝑇aug (𝐷aug, 𝐿aug) ← Generate(𝑇 (𝐷′′, 𝐿))
4: 𝑓 (·) ← Finetune(𝑇aug)
5: 𝑓 ′ (·) ← Calibrate(𝑓 (·))
6: Evaluation:

Use data from SMEs 1 & 2 for training and validation sets.

Use data from SME 3 for out-of-sample test evaluation.

Perform manual expert review on model predictions for

unlabelled data originating from six distinct SMEs.

The dataset was obtained through the Open Banking protocol

from our industry partner that provides loans to SMEs throughout

the UK, comprising transaction records from nine SMEs in the man-

ufacturing sector (as defined by Companies House condensed SIC

codes)
2
selected to represent various business models and bank-

ing providers. An illustrative example of the dataset is provided in

Table 1. For training and evaluation, we use transaction data from

three of these nine SMEs, for which manually annotated ground

truth labels are available. Data from two of these firms are used

for model training and validation, using these ground truth labels.

The third firm, also with ground truth labels, is held out entirely

for out-of-sample evaluation, where its labels are used alongside

standard classification metrics. To further assess the generalisation

of the model and perform additional validation, we use data from

the remaining six SMEs. Table 2 summarises the temporal coverage

and transaction volume of these firms. For these firms, domain

experts from our industry partner conduct validation checks by

manually annotating 100 transactions chosen uniformly at random

across the timeframe for each, allowing model predictions to be

compared against these expert annotations.

2
https://resources.companieshouse.gov.uk/sic/

Table 1: Example of Open Banking Transaction Data

Date Amount (£) Description
2024-03-01 5,200.00 ABC SUPPLIERS LTD INV12345 DD

2024-03-05 850.75 UTILTY ENERG PAY MAR2024 9876 FT

2024-03-10 12,000.00 PAYROLL 0456 BULKPAY

2024-03-15 2,300.50 XYZ TRANSPORT INC 2024-987 BACS

Table 2: Transaction Data Summary

Name Start Date End Date Transactions Total Days
company1 2022-07-26 2024-07-29 2984 734

company2 2023-10-10 2024-09-30 3660 356

company3 2022-07-04 2024-09-30 8238 819

company4 2022-07-13 2024-09-30 5689 810

company5 2022-07-19 2024-09-30 2726 804

company6 2022-06-27 2024-09-27 9884 823

3.1.1 Manual Labelling. Accurately labelled transaction data form

the foundation of our classification model. The process began with

domain experts from our industry partner, who have a deep un-

derstanding of business models and operational intricacies of the

companies included in the dataset. They assigned each transaction

a label from a predefined set of categories, as detailed in Table 5.

These manual annotations provided the ground truth labels for

training. In addition to labelling data for training, the domain ex-

perts also labelled data to validate the classification model. That

is, for a subset of data from additional SMEs, a random sample of

transactions was manually annotated to assess model generalisa-

tion. While this labelling process is time intensive, having domain

experts label data is vital for establishing a reliable benchmark for

our automated categorisation pipeline, given their deep engage-

ment with and understanding of the SMEs.

3.1.2 Preprocessing. The proposed preprocessing pipeline trans-
forms raw transaction descriptions into standardised textual repre-

sentations suitable for semantic labelling and categorisation. Let

𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑛} denote the set of raw transaction descriptions.

Each 𝑑𝑖 ∈ 𝐷 is first passed through a cleaning function Clean(·),
which applies a series of text normalization steps: (1) replacement

of common financial abbreviations (e.g., “ATM”→ “cash”, “BACS”

→ “debit”), (2) conversion to lowercase, (3) removal of punctuation

and irrelevant characters using regular expressions, (4) filtering

of purely numeric or non-informative tokens (e.g., reference num-

bers), and (5) removal of stop words and domain-specific terms (e.g.,

“ref”, “ltd”, month abbreviations). If the cleaned result is empty, it is

replaced with a placeholder token (e.g., “nodescription”), which is

discarded in downstream steps.

After cleaning, we apply a grouping function Group(·) that
groups semantically equivalent cleaned descriptions. This allows

variations of a transaction, such as “PYMT inv 24534 AMZN” and
“PYMT inv 234325 AMAZON”, to be reduced to a single form (e.g.,

“amazon payment”). Once a label is assigned to the cleaned form,

it can be assigned to all transactions in the group, facilitating con-

sistent labelling across similar transactions. This approach enables

https://resources.companieshouse.gov.uk/sic/
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scalable manual annotation and robust downstream classification.

Our preprocessing procedure builds on the pipeline introduced

in Toran et al. [27], adapted here for purely text-based analysis.

3.1.3 Synthetic Data Augmentation. We define the synthetic trans-

action generation function Generate(𝑑, 𝑐, 𝑛), where 𝑑 is a transac-

tion description, 𝑐 is its associated category, and 𝑛 is the number of

synthetic samples to generate. This function is used to augment the

labelled dataset with realistic and semantically consistent variations

of 𝑑 , especially for under-represented categories.

Synthetic descriptions are generated using gpt-4o via the Ope-

nAI API, with temperature set to 0.7 and a maximum of 512 tokens

per request. The prompts are designed to rephrase the original

transaction while maintaining semantic meaning and contextual

relevance to the associated category. For instance, an original trans-

action description like:

biffa waste servic ltd b47391 bbp

could yield synthetic variations such as:

• ‘veolia refuse service payment ref ltd vrs b47392’
• ‘suez disposal services ltd payment ref sd b47393’
• ‘grundon rubbish collection fee ref ltd grc b47395’

The number of synthetic samples 𝑛 per class is determined using

inverse frequency scaling, increasing the representation of minority

classes to approximate a more balanced, though not perfectly uni-

form, class distribution. All generated samples are post-processed

using the same Clean(·) function described in Section 3.1.2. Do-

main experts performed manual validation to verify that the gener-

ated outputs were realistic, coherent, and category-consistent. How-

ever, we emphasise that this augmentation step was exploratory:

we did not over-optimise prompt engineering, filtering, or model

parameters. The objective of this study was to assess whether the

generation of basic, semantically guided synthetic data could im-

prove classification performance, not to build an optimised gen-

eration pipeline. More complex augmentation strategies remain a

direction for future work.

3.1.4 Fine-tuning. We define the function FineTuneFinBERT(𝑆),
where 𝑆 = {(𝑑𝑖 , 𝑙𝑖 )}𝑛𝑖=1, as the balanced synthetic data set consisting
only of augmented and preprocessed transaction descriptions and

their corresponding labels. The objective is to learn a classifier 𝑓 (·)
by fine-tuning a domain-specific language model on 𝑆 , where each

𝑑𝑖 is a preprocessed input and each 𝑙𝑖 is drawn from the label set

𝐿. The model 𝑓 is initialised as a pre-trained FinBERT [2] encoder

with a classification head adapted for |𝐿 | output classes. Fine-tuning
is performed using a weighted focal loss function [20], which com-

bines class weighting with the focal mechanism to mitigate the

effects of class imbalance and over-confident predictions. Let 𝑝𝑡
denote the predicted probability of the model for the true class 𝑡 ,

and let 𝛼𝑡 be the weight associated with class 𝑡 . The weighted focal

loss L
focal

for a single instance is given by:

L
focal

= −𝛼𝑡 (1 − 𝑝𝑡 )𝛾 log(𝑝𝑡 )
where 𝛾 ≥ 0 is a focusing parameter (commonly 𝛾 = 2) that down-

weights the loss assigned to well-classified examples, placing more

emphasis on hard or misclassified instances. We implement focal

loss over standard cross-entropy loss or unweighted alternatives

because of the label distribution and semantic similarity in free-text

descriptions. In this case, the model may become overconfident in

its predictions even when incorrect. Focal loss directly addresses

these issues by reducing the contribution of easy, high-confidence

examples and amplifying the importance of harder cases, thus pro-

moting a more balanced classifier. Class weights 𝛼𝑡 are computed

using inverse frequency statistics from the training set, ensuring

that under-represented classes receive proportionally greater em-

phasis during training. The dataset 𝑆 is stratified into training and

validation subsets, tokenised using the FinBERT tokenizer, and

encoded with truncation and padding.

Table 3 summarises the hyperparameters and training configu-

ration used across all experiments, including the baseline methods

for comparison.

Table 3: Model Hyperparameters and Training Configuration

Component Parameter Value

FinBERT Fine-tuning Base Model ProsusAI/finbert

Learning Rate 2e-5

Batch Size 16

Max Sequence Length 256

Epochs 3

Warmup Steps 500

TF-IDF Models Max Features 10,000

N-gram Range (1, 2)

Stop Words English

Class Weight Balanced

Random Forest N Estimators 100

Random State 42

Class Weight Balanced

Logistic Regression Max Iterations 1,000

Random State 42

Class Weight Balanced

The output of FINETUNE(·) is the fine-tuned model
ˆ𝑓 , stored for

downstream calibration and inference.

3.1.5 Calibration. While the fine-tuning stage aims to improve

classification performance, especially for under-represented classes,

oversampling and augmentation can hide from the model the origi-

nal class distribution. However, in practice, the real-world frequency

of transaction labels is inherently specific to the type of businesses

and the sector they operate in. For example, a business specialis-

ing in power engineering (suppliers) may have many payments to

contractors, which are semantically similar to energy transactions

(utilities). Without correction, these transactions may be misclassi-

fied as utilities, a category that typically occurs with low frequency

in most businesses. To avoid this, we implement a calibration step

to adjust predicted probabilities so they more accurately reflect the

true distribution of transaction types observed in operational set-

tings. We define the calibration procedure CALIBRATE( ˆ𝑓 , 𝐷
real
),

where
ˆ𝑓 is the fine-tuned classifier from the previous step and

𝐷
real

= {(𝑑𝑖 , 𝑙𝑖 )}𝑚𝑖=1 is a labelled dataset consisting of real trans-

action data from the two manually labelled companies and their
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ground truth labels. The objective is to align the predictive confi-

dence and label distribution of
ˆ𝑓 with those observed in real-world

data.

Given predicted logits from
ˆ𝑓 , we apply temperature scaling [10]

to calibrate the output probabilities. Let z𝑖 ∈ R |𝐿 | be the pre-softmax

logits, for instance 𝑖 , and let𝑇 ∈ R+ be a learnt temperature param-

eter. The calibrated logits z̃𝑖 are computed as:

z̃𝑖 =
z𝑖
𝑇
+ b

where b ∈ R |𝐿 | is a learned bias term. The parameters (𝑇, b)
are optimised to minimise the negative log-likelihood (NLL) on

a held-out calibration set. The result is a calibrated model whose

output probabilities better reflect both predictive confidence and

the expected distribution of transaction categories in deployment.

Calibration effectiveness is evaluated usingmetrics such as expected

calibration error (ECE) and NLL.

3.1.6 Evaluation. We evaluated the calibrated classifier
ˆ𝑓 using

a 5-fold cross-validation on a labelled dataset of real transaction

descriptions and their corresponding ground truth labels. For each

transaction 𝑑𝑖 , the model outputs a calibrated class probability

distribution via:

𝑃 ′ (𝑦 |𝑑𝑖 ) = CALIBRATE( ˆ𝑓 (𝑑𝑖 ))

where CALIBRATE(·) denotes temperature scaling, applied to

the uncalibrated logits produced by the base classifier
ˆ𝑓 . The final

predicted label and associated confidence score for each input are

computed as:

ˆ𝑙𝑖 = argmax

𝑦
𝑃 ′ (𝑦 |𝑑𝑖 ) and conf𝑖 = max

𝑦
𝑃 ′ (𝑦 |𝑑𝑖 )

We report multiple evaluation metrics:

• StandardAccuracy: Proportion of correct predictions across
all test instances.

• High-Confidence Accuracy: Accuracy computed on the

samples where conf𝑖 > 0.8.

• Top-Class Confidence Accuracy: Accuracy among the top

10% most confident predictions per fold.

• Top-2 Accuracy: Fraction of instances where the true label

appears within the two predicted top classes:

ˆ𝑙𝑖 ∈ Top-2(𝑃 ′ (𝑦 |𝑑𝑖 ))

Following cross-validation, the model was retrained on the full

labelled dataset and applied to unlabelled transaction data to gen-

erate probabilistic label predictions. These outputs can be used for

downstream tasks such as weak supervision, anomaly detection, or

prioritised human review.

4 RESULTS
We evaluated both individual components and the end-to-end per-

formance of the suggested pipeline. We begin by validating our

synthetic data generation approach, followed by calibration, classi-

fication performance on held-out data, and comparative analysis

against baseline methods.

4.1 Synthetic Data Quality Evaluation
Statistical and Linguistic Properties. Our synthetic data closely

matches the linguistic characteristics of real transactions. Length

distributions show similar means (real: 36.3±19.7 vs. synthetic:

36.8±17.7 characters). While the synthetic vocabulary expanded

significantly (6,576 vs. 1,416 tokens), it maintains 48.0% coverage

of the original vocabulary with a Jaccard similarity of 0.093. This

expansion is desirable as it introduces linguistic variation while

preserving domain-relevant terms.

Semantic Coherence and Diversity. Semantic analysis using BERT

[5] embeddings reveals a strong alignment between real and syn-

thetic data. The mean cosine similarity of 0.879 (±0.048) demon-

strates that synthetic transactions preserve semanticmeaningwithin

their assigned categories. Importantly, our generation process main-

tains diversity with 94.2% unique synthetic examples and a diversity

score of 0.167, avoiding mode collapse. Category coherence scores

remain consistently high across all classes (0.835-0.897).

Class Balancing Strategy. Our synthetic augmentation employs

an inverse-frequency scaling strategy to address class imbalance:

Category Real Synthetic Ratio
Suppliers 565 565 1.0×

Payroll/Consultants 460 460 1.0×

Sundries 177 1,062 6.0×

Software/IT 160 960 6.0×

Travel 137 959 7.0×

Tax 104 1,040 10.0×

Utilities 97 988 10.2×

Marketing 84 840 10.0×

Inventory 52 936 18.0×

Debt/Loan 34 952 28.0×

Rent 27 810 30.0×

Table 4: Synthetic data generation ratios by category, showing
inverse-frequency scaling to address class imbalance.

This strategy generates up to 30× synthetic examples for mi-

nority classes while maintaining 1:1 ratios for majority classes,

effectively balancing the training distribution without overwhelm-

ing the model with synthetic data.

4.2 Calibration Performance
To evaluate the reliability of the model’s probability estimates, we

evaluated the calibrated classifier using standard calibration met-

rics on a holdout test set. As shown in Figure 1, the model initially

exhibited significant miscalibration, with predicted confidences

notably higher than empirical accuracies (top panel). This is quan-

tified by a relatively high ECE of 0.1091 before calibration. After

calibration, the alignment between predicted confidence and actual

accuracy improved substantially (bottom panel), reducing the ECE

to 0.0048, indicating well-calibrated predictions. Furthermore, the

NLL was measured at 0.8141, supporting the conclusion that the

model produces reasonably calibrated probabilistic outputs. Table 5

also shows that calibration improved the alignment between the

predicted and true label distributions, which is especially important

in class-imbalanced domains such as SME.
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Table 5: Label Distribution Comparison

Label Name Target Predicted
charges / fees 0.0549 0.0462

debt / loan repayment 0.0122 0.0154

marketing / advertising 0.0427 0.0769

payroll / consultants 0.1280 0.1077

rent 0.0091 0.0154

software / it 0.0732 0.0308

sundries 0.0976 0.1538

suppliers 0.4055 0.3231

tax 0.0366 0.0615

travel 0.1159 0.1385

utilities 0.0244 0.0308

4.3 Classification Performance
We evaluated the final classification performance using 5-fold cross-

validation on the held-out SME. The average standard accuracy is

73.49% (±5.09%), indicating consistent generalisation performance

across the divides despite label imbalance and class sparsity. To fur-

ther assess performance across varying levels of model confidence,

we report several additional reliability-aware metrics. Figure 2 il-

lustrates the accuracy distribution across the cross-validation folds

for the standard accuracy as well as for these confidence-aware

measures. The specific confidence-aware metrics are:

• High-ConfidenceAccuracy (conf 0.8): 90.36% (±6.52%), demon-

strating strong precision when the model is confident.

• Top 50% Confidence Accuracy: 88.55% (±5.21%), reflecting
model robustness in the most confident half of the predic-

tions, useful for confidence-based filtering.

• Top-2 Accuracy: 89.63% (±4.51%), indicating that the correct

class appears within the top two predictions in the vast ma-

jority of cases, supporting semi-automated review pipelines.

These results suggest that the model performs reliably across

both low- and high-confidence scenarios, and that confidence esti-

mates can be effectively leveraged to support human-in-the-loop

workflows or probabilistic label refinement strategies in noisy fi-

nancial text classification settings.

4.4 Comparative Analysis
To address the need for comprehensive baseline comparisons and

evaluate the contribution of individual components in our pipeline,

we conducted extensive experiments using 5-fold stratified cross-

validation.

4.4.1 Baseline Methods. We compared our proposed approach

against multiple baseline methods to assess the effectiveness of

our pipeline. The baselines include traditional machine learning

approaches using TF-IDF features, pre-trained FinBERT models

with varying levels of fine-tuning, zero-shot classification using

state-of-the-art LLMs, and ablation studies:

Our calibrated approach achieves 73.4% (±8.1%) accuracy, sub-
stantially outperforming all baseline methods including state-of-

the-art LLMs. Notably, GPT-4o in a zero-shot setting achieves 60.4%

accuracy, which, while respectable for zero-shot classification, falls

13 percentage points short of our fine-tuned approach. This im-

provement demonstrates that conventional text classification meth-

ods and even advanced LLMs fail to fully capture the semantic com-

plexity inherent in SME transaction descriptions, which are char-

acterised by extreme abbreviations, limited context, and domain-

specific terminology.

4.4.2 Zero-shot LLM Analysis. To understand the capabilities and

limitations of modern LLMs on this task, we evaluated GPT-4o

using prompts with detailed category guidelines. Without access to

historical patterns or company-specific knowledge, the LLM relied
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Figure 1: Calibration plots showing mean predicted confi-
dence (x-axis) versus empirical accuracy (y-axis) on the test
set, before (a) and after (b) applying the calibration method.
Points represent binned predictions, with the diagonal line
indicating perfect calibration.
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Table 6: Performance comparison across different classifi-
cation methods. Results show mean accuracy and standard
deviation across 5-fold cross-validation.

Method Accuracy (%)

FinBERT-FT-Calibrated (Ours) 73.4 ± 8.1
FinBERT-FT-Uncalibrated 68.0 ± 6.3

GPT-4o (zero-shot)
†

60.4

TF-IDF + Random Forest 50.0 ± 3.2

FinBERT-Base-FT 40.6 ± 0.5

TF-IDF + Logistic Regression 47.6 ± 7.4

FinBERT-Base (no fine-tuning) 7.9 ± 4.2

†
Single evaluation on test set due to API cost constraints

purely on textual cues, missing important contextual relationships

that our fine-tuned model captures. These results highlight that

while LLMs provide a strong zero-shot baseline, domain-specific

fine-tuning remains essential for automated financial decision mak-

ing.

4.4.3 Ablation Study: Calibration Impact. To quantify the contri-

bution of our calibration methodology, we conducted an ablation

study comparing calibrated and uncalibrated versions of our fine-

tuned model. The calibration procedure provides improvements on

multiple metrics. The calibration step yields a 5.4 percentage point

increase in classification accuracy (73.4% vs. 68. 0%), demonstrat-

ing its effectiveness in aligning model predictions with true label

distributions. More significantly, the Expected Calibration Error

(ECE) improves from 0.108 to 0.020, representing a 5.4× reduction

in miscalibration, this is an important enhancement for financial

applications where confidence scores directly inform risk-based de-

cision making. Perhaps most importantly for practical deployment,

calibration substantially improves performance on high-confidence

predictions: for predictions with confidence >0.8, calibrated models

achieve a precision of 89. 3% compared to 73. 2% for uncalibrated

models, enabling more effective automated decision-making work-

flows where human oversight can be strategically reserved for

lower confidence cases.

4.4.4 Statistical Significance and Robustness. Using paired t-tests

on the 5-fold cross-validation results, all performance differences

Figure 2: Accuracy distribution across folds for standard,
high-confidence, top-50%, and top-2 predictions.

demonstrate statistical significance. The comparison between cal-

ibrated and uncalibrated versions reveals a 5.5 percentage point

difference (t = 3.364, p = 0.028), confirming the impact of our cali-

bration methodology. Compared to traditional machine learning

approaches, our method achieves 23.4-25.9 percentage point im-

provements over both TF-IDF-based methods (p < 0.01), highlight-

ing the inadequacy of conventional text classification techniques

for this domain. Comparison with pre-trained FinBERT without

fine-tuning shows a 65.5 percentage point difference (t = 11.937,

p < 0.001), underscoring the critical importance of domain fine-

tuning. Against fresh fine-tuning approaches, our method main-

tains a 32.9 percentage point advantage (t = 8.425, p < 0.01, Cohen’s

d = 3.768). Beyond accuracy improvements, the calibration method-

ology shows significant improvements on the prediction quality

metrics. The Expected Calibration Error shows a 5.3× reduction

in miscalibration (t = 7.785, p < 0.01). These findings validate our

methodology’s core components: the pre-existing fine-tuned model

captures domain-specific patterns from extensive transaction data,

synthetic data augmentation addresses class imbalance effectively,

and calibration ensures reliable confidence estimates essential for

practical deployment in cash flow lending applications.

5 DISCUSSION AND FUTUREWORK
Our study presents a bank transaction classification pipeline that

integrates synthetic data generation with fine-tuned language mod-

els, achieving 73.49% (±5.09%) accuracy in categorising SME bank

transactions across diverse businesses. More importantly, the model

reaches 90.36% (±6.52%) accuracy for high-confidence predictions,

underscoring its utility for semi-automated workflows where hu-

man oversight can be strategically focused on lower-confidence

outputs. Our methodology effectively addresses the persistent chal-

lenges of data scarcity and class imbalance in financial text clas-

sification, issues that have constrained earlier approaches [7, 24].

A key aspect of our pipeline is the use of Large Language Models

(LLMs). We leverage LLMs to generate synthetic bank transaction

data, not for the direct categorisation of these transactions. This ap-

proach is advantageous from a data security perspective for several

reasons: (1) Synthetic data generation for performance enhance-

ment can be accomplished with a minimal subset of the actual data

and limited details per transaction, thereby preserving company

and operational anonymity. (2) Direct categorisation of bank trans-

action data using LLMs would necessitate substantial, real-time

sharing of transaction volumes and associated metadata, a level of

exposure that financial services institutions typically aim to avoid.

This distinction allows our pipeline to use the power of LLMs for

data augmentation, similar to recent work by He et al. [11] and Li

et al. [18], while mitigating data privacy concerns. Furthermore,

we extend these methods by incorporating domain-specific calibra-

tion to align model outputs with observed transaction distributions.

Our findings resonate with Hussain et al. [16] and Kotios et al.

[17], who highlighted the need for contextual understanding in the

classification of financial transactions. However, our work distin-

guishes itself by specifically addressing the unique complexities of

SME transaction data, a domain less explored than consumer or

large enterprise transactions. The capacity for accurate, automated

transaction categorisation offered by our approach can significantly
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improve the monitoring phase of cash flow lending, as indicated

by domain experts, and contribute to mitigating the estimated £95

billion finance gap for UK SMEs. Looking ahead, several avenues

for future work promise to further enhance our model’s capabili-

ties. Incorporating sequential information, as advocated by Banu

et al. [3] and Toran et al. [27], is a logical next step to improve

classification accuracy, particularly to identify recurring patterns

and temporal dependencies within complex real-world financial

datasets. These studies suggest that integrating recurrent or sequen-

tial architectures could substantially improve our model’s ability

to capture the inherent dynamics of SME banking data. While our

evaluation is limited to 4 SMEs in the manufacturing sector, we

acknowledge this as a proof-of-concept study. The model has been

deployed in production with more than 50 SMEs across 15 sectors,

and we are collecting performance metrics for future validation.

We present this work as an initial demonstration of feasibility, with

comprehensive cross-sector evaluation planned as longitudinal data

becomes available. Another critical direction is to improve the in-

terpretability of the model. While the current model demonstrates

robust performance, the black box of deep learning models remains

a pertinent concern in financial applications. As shown by Hjelkrem

and Lange [13], techniques such as SHAP (SHapley Additive exPla-

nations) can be effective in elucidating model decisions, for instance

in credit scoring using open banking data. Improving explainability

is vital for building user trust and ensuring effective human over-

sight. Furthermore, we plan to explore the potential of open-source

LLMs to enhance the categorisation step of our pipeline for spe-

cific company transactions and associated metadata. This includes

investigating their utility in generating an initial set of category

labels from limited data, which could further streamline the setup

process for new datasets. Existing metrics for assessing the quality

of generated data often focus on similarity at the word or n-gram

level [1]. Recognising the limitations of these approaches for our

specific needs, we are developing a novel metric. This new metric is

specifically designed to rigorously evaluate the semantic similarity

between real and synthetic transaction descriptions. The develop-

ment of this metric will provide a more nuanced understanding

of the effectiveness of our data augmentation strategy and guide

future refinements.
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